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The papers [2,3,4,5] of the list of References dealt with the following
extremum problem: In the hypercube Yn of R® we have a k-flat L, in
general position which is reflected by the (n - 1)-facets of Yn' while we
continue indefinitely reflecting these reflexions, thereby generating a finite
or infinite polytope H:. Here we assume that

1§k n-1.

A

The present paper deals with the case when n = 4, and when

(1) k=1,k=2, and k =3 .

The main problem is to determine ﬂ: to s*..y away as much as possible from
the center ¢ of Yn' the main emphasis being the graphic representation of
the extremum Ht. This is done for the three cases (1) in Fiqures 2, 4, and
8. These figures are parallel projections of Y4 onto our space R3. The
author also made for each of these figures 3-dimensional models made of thin
wooden sticks, and my colleagues, in the Fine Arts Department of UW, say that
these models qualify as examples of Constructive Art. All of these polygons
and polytopes are self-reflecting, meaning thereby that we obtain the entire

object by starting from one of its k-facets, and reflecting it successively in

the facets of 74.

AMS (MOS) Subject Classifications: 51N20, 52725
Key Words: Extremum problems, billiard ball motions

Work Unit Number 1 (Applied Analysis)
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SIGNIFICANCE AND EXPLANATION

/

fIh,papers [2,3,4,5] of the list of References the author dealt with

I

certain extremum problems for billiard ball motions in the hypercube Y, of

’ 3 : :
R". Here we study in greater detail the case when n = 4, the results being
graphically described .in the three Figures 2, 4, and 8. The author also made

3-dimensional models corresponding to these figures out of thin wooden sticks.

P

1

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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SELP-REFLECTING SKEW POLYGONS AND POLYTOPES IN THE 4-DIMENSIONAL HYPERCUBE

I. J. Schoenberg

L~

- 1. INTRODUCTION.

:'- This is a contribution to some geometric aspects of the 4-dimensional hypercube Y
- Following the pioneering paper (1] of KSnig and Sz{ics the author has studied billiard ball
t‘ motions in a hypercube of R" in his papers (2, 3, 4, 5S]. The main concern is an extremum
E:' problem which may be stated as follows.

- Let

E‘ (1.1) Y 2O0gx SN (i=1,2,.0m)

be the measure polytope in R?. In Yn we consider a k-dimensional flat (1 < k <n - 1)

given parametrically by

X
(1.2) Lt ox = ,21 Aiuj +a (1 = 1,000,m) ,

such that the point a = (‘i) is interior to Y

We now reflect Ly in the 2n facets x; = 0 and Xy = 1 of 'yn whenever L,
strikes them, and keep reflecting these reflexions indefinitely thereby generating a finite
or infinite polytope which we denote by Il:. The entire study was made possible by the use

of the auxilliary function <x> defined by

fx 4ifF 0gxg1,
(1.3) <x> = <x + 2> = <x> for all real x .
2=-x if 1< x S 2 ’

We may call this the linear Buler spline; it has & zig-zag graph shown in Figure 3 below.

By weans of it the reflected polytope admits the equations

X
(1.4) s ox -<,Z1 Xiuj va ), (=1,0m .

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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In general we have the ergodic situation: the polytope n: is dense in Yh' As the

opposite of ergodicity we assume that there is an open hypercube
1 1 1 1
(1.5) cp s Ix - cl. <p, Cc= (-, 5""'5)' 0 < p« 7
such that n: does not penetrate into cp' hence such that
. n .

(1.6) s c, =8
However, in order to have a truly n-dimensional situation, we must assume that Ly is in a

general position.
Definition 1. We say that L, is in general position provided that

(1.7) the n x k matrix Ikil has no vanishing minor of order k.

Our problem is to determine, or estimate, the quantity
(1.8) sup p = “k,n

under the assumptions (1.6) and (1.7). 1In (4, Theorem 1, p. 55] it was shown that

1.k torall x=1,2,c000n-1.

(1.9) Pe,n 22 2

It was also shown ({3], and [4, Theorem 2, p.55)) that in (1.9) we have the equality sign

for the two extreme values of k:

L T I ik | l_n-1_21
p1,n 2" 2n " "2n ' and pn--1,n =2 2n 2n °

It was also conjectured in [4, p. 56] that the equality sign holds in (1.9) also for

(1.10)

k = 2,3,.00,k = 2, but this has not been egtablished.
Let us look at the simplest cases.

1. If k=1 and n = 2, then by (1.10) we have that P 1/4, and the polygon
’

N -

I, satisfying n; ne = g 1is the slanting square of Fig. 1 (a).

1/4
2, If k=1 and n = 3, then again by (1.10) we have 91,3 = 1/3, while ﬂ; is
the hexagon 123456 which winds its way around the maximal cube C1/3, as shown in
Fig. 1 (b)
3. Finally we consider the case k = 2 and n = 3. By (1.10) we have 92'3 = 1/6,

and the corresponding polyhedron ng is Kepler's regular tetraheron T = ABCD shown in

Fig. 1 (c).

-2-
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As in the general case of (1.4) the figures, in all three cases of Fig. 1, are seen to
be self-reflecting: starting from any edge, or facet, we obtain by successive reflections
the entire figure.

The present paper deals with the simplest higher-dimensional case when n = 4, and is
divided in two parts. 1In Part I we discuss the two cages when k = 1t and k = 2. The
general results (1.9) and (1.10) were given for orientation only, and will not be used in
Part I. In Part II we discuss the case k = 3 using results of our last paper (5).

In both parts the emphasis is on the graphic reprelentntibn given in Figures 2, 4,

8. These are naturally plane figures, but should be regarded as figures in R3. These
3-dimensional figures represent parallel projections of 74 onto our space rR3.
Nevertheless we will often regard them as actually representing 1;, rather than its
projections on R3.')

The author also made 3-dimensional models, corresponding to these fiqures, made out of
thin wooden sticks, and the author's colleagues in the Fine Arts Department of the
University of Wisconsin say that they qualify as examples of Constructive Art. For further

models concerning the finite Fourier series see Chapter 9 of the author's forthcoming book

(61.

Perhaps the main contribution of this paper is the second part of Part I corresponding
to the case wvhen k = 2: The discovery of the skew octahedron 0, in Y@’ which is self-
reflecting (Fig. 4). It is the analogue in Yq for k = 2, of Kepler's tetrahedron T

of !'iq- 1 (C)o

Part I. The two cases when k = 1,2

e 2. The "lucky” billiard ball shot for n = 4. This was discussed for a general n
Bx in (3]. Here we derive it independently for n = 4 in

Pt fair]
l.a [y
R
[T

*) Our figures 2, 4 and 8, remind us of the absent-minded tescher who writes A, means
B, and should have written C: Our threx figures are in R, represent objects in R3
and should really represent objects in R".
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Theorem 1. The equations

(2.1) x “-<u=-3, (0<uc2)

-<u--1->,x-<u-£>,x ry

2 4 3 4
define an octagon lI: - A°A1,...,A7, shown in Fig. 2, having the following properties

1 = <u>, X%

4
1. Il: is the path of a billiard ball within Yy

2. ll: has no point in common with the open hypercube

3 1 1

(2.2) C3/8 I =cl < 8 (c = (5""'3)) ’

while the midpoints of the 8 sides of lll are in 2-dimensional facets of C, /8°
3. We have

(2.3)

According to the definition (1.8) this means the following: If 3/8 < p < 1/2, then every

billiard ball path which is initially not parallel to any of the coordinate hyperplanes

x = 0, must penetrate within the open hypercube

(2.4) cp s Ix=-cl <p.

Proofs of 1 and 2. 1. (2.1) define a closed octagon because the equations (2.1) are

linear in each of the eight intervals

teugdiel, weonm.

PR

If we write (2.1) as x = £{u), and denote the vertices by Ay = £(1/4), we £ind that
these vertices are

Ag = (0, 174, 2/4, 3/4), Ag= (1, 3/4, 2/4, V/4) ,

(2.5) Ay = (1/4, 0, 1/4, 2/4), Ag = (3/4, 1, 3/4, 2/4),

Ay, = (274, 1/4, O , 1/4), Ag = (2/4, 3/4, 1, 3/4),

Ay = (374, 2/4, 1/4, 0, Ay = (1/4, 2/4, 3/4, 1) .
That the equations (2.1) define the path of a billiard ball is due to the zig-zag nature of
the graph of the function (1.3).

2., That lll n cs /8 = 4 may be expressed by saying that 1!1 is contained in the

closed hypercubical box

(2.6) B=Y, \ ca/s .
That indeed
(2.7) mc B

-6=

»
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is seen as follows: The four arguments
3

1 .-2 .-
. B, u-gu-g U7,
appearing in (2.1), are equidistant with step h = 1/4. This implies that at least one of
% them, u - (1/4) say, is at a distance < 1/8 from some integer point j, hence that
wu-%=3+0 (8l gVe JeEem .
However, from (2.1) and Fig. 3, we see that we therefore have
o either 7/8 & x

£1, orelse 0 < x < 1/8,

i

and this implies that indeed we have (x1 "%y

i
,xs,x‘) € B. Thig proves the inclusion (2.7).

—

o R\ —————y=/8

(%)
A 4 ly = 1/8
1.1 1,..1 "
‘EOE 2 j—g'j j#g 3
Fig. 3
. However, if u = 1/8 say, then (2.1) show that Mg = (x..,xz,xa,x‘) is the midpoint
\ of the side AgA,, and by
1 1 3 S5
" (2.8) "= (g 3 5 8)
::: we conclude that Mg is on the 2-facet xq = 178, x, = 1/8 of the hypercube C3/a
defined by (2.2).
o That a segment A°A1 may intersect the closed hypercube 53 /8 in a single point
(2.8) in the interior of its 2-facet

Xy = 1/8, xp = 1/8, 1/8 < xy < 7/8, /8 ¢ x, £ /8 .

is a peculiar property of R‘. which would not show well in the parallel projection of

Pig. 2, nor in the 3-dimensional model which is also only a parallel projection of 74

. on R3 « Por this reason we do not show C, /8 in Fig. 2, nor in the corresponding




3-dimensional model. Similarly, A4A, touches c3/a in a single point M, of its
2-facet x, = 1/8, xq = 1/8.

Por a proof of Statement 3 we refer to (3], or to [4, (4.5)).

A last word on the rectilinear construction of the vertices A; in Fig. 2. 1In the
3-facet L P 0 we have marked the four points P, Q, R, and S. Clearly P = (1,1,0,0),
R = (0,1,1,0), and therefore their midpoint is Q = (1/2,1,1/2,0). Finally, the
midpoint Ay of QS, with 8 = (1,0,0,0), has the coordinates Ay = (3/4,2/4,1/4,0)
which agrees with the value given by (2.5).

3. The case k = 2, Fig. 4 below is to be viewed as a 3-dimensional figure; it shows

a parallel projection of the hypercube

(3.1) Y " {o ¢ x, SN i=1,2,3,4}
onto our space R3.

Let
(3.2) £,£'.9.9"

be four parallel 2-dim facets of Yqr 80 that £ and f' are symmetric in the center
c=(1/2,1/2,1/2,1/2), and therefore so are g and g'. Without loss of generality we
may choose the facets (3.2) to be

2-(:1-0,1.2-0}, !"(*1-‘1x2"}0

(3.3)

g={x; =0, x, =1}, g' = (x1 =1, x, =0} .

2 2

Let A be the center of £, and A' the center of f'. Furthermore, let BB' be a
diagonal of g, and let CC' be the diagonal of g' which is not parallel to BB'.

Finally, let ( denote the surface of the (skew) octahedron having the three diagonals

(3.4) AA*, BB', CC'

The 12 edges of () are marked by heavy lines in Fig. 4, but the reader is asked to
. regard () as being in rRé. A simple enumeration shows that there are 24 different

- octahedra , all congruent to each other.

t! Our main result is
K
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(1,1,2,1)

'~

(0,0,0,1)

(0,1,0,0)

(0,0,0,0) ¢(1,90,9,0)

Fig. 4
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Theorem 2. (i) The octahedron 0 is self-reflecting. This means that the 12 edges

of 0 are in the boundary 3y,, and that the entire surface of () is obtained by

starting from one of its facets, for instance the triangle ABC, and reflecting it

successively in the 3-facets of Y4-

(11) The four 2-facets of ( having the common vertex A are congruent isosceles

right-anqled triangles, the four angles at A being all of 90°. The same is true of the

four 2-facets with the common vertex A', where the four angles are all of 90°. The

lengths of the sides of these eight triangles are
(3.5) Y372, 372, /3.

(1ii) The octahedron ( has no point in common with the open hypercube

1 1 1 1 1
(3.6) c1/4 : Ix - cb < ikl [c = (‘5. 2" 3¢ '2')) ’

but each of its eight 2-facets touch a 1-facet of Cy,4 4in a single point, namely its

11 3
373 3% 3

in the single point xq = 1/4, Xy = 14, X3 = 1/4, x4 = 1/2. This point of contact is

X

1 1
(3.7) Xy =g %Xy =g

obtained in Fig. 4 as follows: If M 4is the midpoint of the hypotenuse BC then the

point (1/4, 1/4, 1/4, 1/2) is the midpoint of AM. Similarly for the reamining seven

facets of (.

Remark. Observe that for k =2 and n = 4, the right side of (1.9) becomes

% - %; - %. This strongly suggests the conjecture that s " 1/4, but this has not
’

been established.

A proof of Theorem 2 requires some ideas and results fully developed in (4] which we
need here for the special case of n = 4. For this reason we present them here
independently of [(4].

4. Monochromes and 4-Chromes in Rz.

Let

(4.1) {x} = min |x - m|
mex

denote the distance from the real x to the nearest integer. 1Its graph is also a zig-zag

- curve related to <*> by {x} = <2x>/2.

-10-
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It X1u1 + quz + a is a nonconstant linear function, then the equation
{X1n1 + Aznz + a) = 0 is equivalent with the infinite set of equations

(4.2) X1u1 + Azuz +a=3 (j ez .

Clearly (4.2) define in the (u1,u2)-p1ane a sequence of parallel and equidistant lines, the

distance between two consecutive lines, or period, being p = ( (A")2 + (Xz)z)-vz.

However, if § 1is a constant such that

(4.3) 0<¢<8§<¢,

then the inequality

§
(4.4) M(8) : {Au, + A, +a} <o,
defines an infinite system of parallel and equidistant strips
[ 8
{4.5) 3-25x1u1+x2u2+a53+2 (jezm ,

again with the period p = ((A1)2 + (Az)z)-vz, the common width w of the strips (4.5)

being w = §p. The ratio
(4.6) w/p=§
is called the density of the set M(§) of strips. The set M(8) is called a monochrome
of density 8. M($) reminds us of the colored strips of an awning used to provide shade
for store fronts, and we like to think of the strips (4.5) as carrying the same color Y,
which explains the term monochrome.

Example 1. In Fig. 5 we see the set of vertical strips marked with the letter M,.
As their period is p = 1, and their width w = 1/2, wve see that they form a monochrome
H1(-;-), of density & = 1/2, The inequality defining M, (%) is clearly
(4.7) m(3) ¢ fu, -3} s 3.

Now suppose that we have four monochromes
(4.8) m(® : Oduy e ade, vad e, w=23,0,
all of the same density &, where we think of the strips of ui(s) ag carrying the same
color 11. We further assume that no two among the monochromes (4.8) are parallel, a

condition expressed by requiring that

(4.9) the 4 x 2 matrix IX;I has no vanishing minor of order 2 .
-11=

P P




T

Chask e )

X ':t\\'"'_/,{i " ::\\~ u.-”‘:: "

Fig. 5

Definition 1. We say that the monochromes (4.8]1) from a 4-chrome

(4.10) X3(8) = {M,(6),M,(8),M,(8),M,(8)}

of density 6, provided that the entire plane is covered with paint, hence that

4 2
(4.11) U w8 =8
i=1

Example 2. oOur Fig. 5 exhibits a 4-chrome xi(%), which is the basis of our
discussion. Here H1(%] is the monochrome of our Example 1. Mz(%) is horizontal and
1 1 1 1
defined by the inequality {“2 - ;} s re The union M1(3) U Hzfi] already covers the
entire plane with the exception of the open squares

1 1 1 1 2
(4.12) 'p,q {p " <u <prtg q-g< uy <q+ 4}, where (p,q) € 8" ,

centered at the lattice points and having sides = 1/2. They are hatched in Fig. 5.

1
that M3(2) covers all squares s ,

such that p + q is an even number, while H‘f%

-12~
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covers all squares such that p +q is odd. The inequalities (4.8) for the monochromes of

Fig. 5 are explicitly given by

1 T
m(3) ¢ v, -3t sqs

1 1, 1
wG) by, -3tsq

(4.13)
u, +u

1 1 Y%

8 ——lsg.

u, - u, + 1
() ¢+ H—2—1}

A
N P
-~

as is readily verified by the explicit form (4.5).

S. Construction of the Octahedron ( of Theorem 1.

We derive O from the inequalities (4.13) by the device of replacing the function

{-} by the linear Euler spline <¢>, and thereby define the equations

(5.1)
\l' uz
* = ( 2 ).
- 1
*a '( - :2 - y

By the general principle used in deriving (1.4) we already know that (5.1) define a self-
reflecting polytope in ¥ 4 Let us abbreviate (5.1) writing
(5.2) <xi> = f(\l"\lz) .

This is a doubly-periodic function with the period 4 in uy and in u,. We also easily

-]3-
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verify that
(5.3) £(u, + 2,uy - 2) = f(u,,uz), fluy = 2,uy + 2) = i(u,,uz) .
The functions on the right sides of (1.5) are continuous in Rzl they are also linear

functions except on the lines where their arguments assume integer values, where their

first partial derivatives are discontinuous. These are four sets of parallel lines

(5.4)

u, +u, = 2j ’ uy = u, = 29 -t , for all integers j .

In Fig. 6 we draw the 4 x 4 gquare in the (“1'“2)-plane

1 1
184735 %

Drawing appropriate lines (5.4) we find that S is partitioned into 32 triangles indicated

1 1
(5.5) s={-7¢u s4-3}.
by solid lines.
From (5.1) we find by direct evaluations that the six points

1

A= f(%r %) - (ou o, %; E) ’ A' = f(' ll - %) - (10 1'%1 %)

(5.6) B=e(2, -3 =(0, 1,0, 1), =23 )= (o, 11, 0)

c=t(-2, 3 =(,0,00), c=£23 =00 11)
agree with the vertices of ( as given in Fig. 4. We also label in Fig. 6 these six
points with the letters A,B,...,C'. Using the identities (5.3) it is easy to label all 25
points of Fig. 6 with the letter of the vertex of ( into which they are mapped.

To get a clear picture of the mapping (5.2) it is convenient to consider the eight
facets of (
(5.7) 'l‘.l = A'BC, 'l'2 = ABC, '1‘3 = ABC', '1'4 = A'BC' ,
Ts = AB'C, '1'6 = A'B'C, '1'7 = AB'C’, 're = A'B'C' .

We also label each triangle of Fig. 6 with the symbol T of the facet into which it is

~14~
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mapped. In Fig. 6 we divide the square S into four 2 x 2 squares, and Fig. 6 shows
R

that each of these 2 X 2 squares is mapped into the entire surface of 0:

*“2
|
|
S S Ay - A"
T, 1' ] ] :1'1 Ts: T4
| 1 ] :
AT B NG
I oo 1) 4 .| T
c : 11‘3 g Ts AL c
Vi NG S
' : : ) I
U AN\ I 7/ S S T, N B R
T [} t by T
8 , 1 ;6171
M2 \ A Ts W 1/ v: A N O T,lA
....... - .-l-..._B .%.‘1- A R R ' bl
\ \J ; i (M:) :
~ r\ ;- | }
~ — o o - - ——— - - e e — - - e
Mz\{ \\' -4er5 1 4:-1 TZ c
v C "NITLI T ) 1
-X-}> -%- \Z-i-_-'-.- & 3 ¢ S
N B N A
N \: .—-: Ay
Tl\\ | S ?T Ta: TG
A N BNy A B' A
N \\Ml.
M \\ My Pig. 6

four times.

The Image of § Dby (5.2) covers (0

Let us finally derive the values (3.5).

Observing that

(4/dx)<x> = t1, it follows

that in the interior of the 32 triangles of Fig. 6 we may differentiate the functions (5.1)

obtaining

dx1 = td\l1, tlx2 =3 &2, 4

It follows that

4
2, 2 2 2 1 2,1 -
ds g (ax,) (qu)® + (qu)® + 3 (duy + )™ + ¢ (duy =~ duy)

1 1
dax -t;(dt|1*du2), dx‘-t-z-(dui-duz).

2
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whence

(5.8) , et =2 @t e (aph .

This shows that our mapping from S to ( is (locally) a similitude of ration 1 : /2.
This shows that the 8 triangles (5.7) are congruent to each other and that they are as
described in (i) and (ii) of Theorem 2; also the values (3.5) are now verified. We believe

to have amply demonstrated parts (i) and (ii) of Theorem 2.

6. Proof of Part (iii) of Theorem 2.

The proof has two parts:
1®* We are to show that
. N .
(6.1) 0 ci/4 =g
2®* We are to determine the points of the intersection (N c1/4.

Proof of 1°. We establish (6.1) in a way similar to the proof of the inclusion

(2.7): We consider the closed box

(6.2) By " Yo\ €y

and wish to show that

. n .
(6.3) 0 B,
Referring to Fig. 7 we state
Lemma 1. For a real x we have

(6.4) {x} <174 ,

if and only if

(6.5) either O g < < 1/4, or else 3/4 L g1,
A

(x)

Pig. 7

=16~
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A glance at Fig. 7 proves this. Now we use the fact that Fig. 5 represents a 4-chrome

Y:(%) whose four monochromes (4.13), of density %, cover the plane. But then for
every (uq,u;) we have
(ug,uy) © "1(%)‘ for some 1{ ,
and by ILeoma 1 and (5.1) we conclude that for some i we have
either 0 & x < %, or else % < x, g1 .
This establishes (6.3).
Solution of 2°. Here we use the peculiarly tight structure of the 4-chrome of Fig.
5. The answer, as described by the example of the 1-tfacet (3.7), follows from the
following observations.
1'. On the two boundary lines of a strip of any of the monochromes (4.13), like
"3(%) sau. we have {(u, + u,)/2} = 1/4.

2'. Bvery vertex of the squares s . of (4.12), is on the boundary lines of three

P.q’
monochromes. For instance, the point
(6.6) uy = 1/4, u, = 1/4
1 1 1
is on the boundary lines of H‘(;), Hz(;], Ha(;), as shown by Pig. S, or Fig. 6. From 1'
and (5.1) it follows that the image of the point (6.6) is on the 1-facet

u, *+
1“2)

"1'<“1";')'%' "z'<“z";'>'%' % = (—— '%‘
as is also easily verified.

Incidentally also Fig. 7 shows that {x} = 1/4 iff either <x> = 1/4, or else
<x> = 3/4,

We have shown that every facet Ti' of 0, touches 51/‘ in a single point having
in Ty the barycentric coordinates (1/2, 1/4, 1/4); these points are especially marked
in Pig. 6.

A _Conjecture. Fig. 5 suggests very strongly the following
Conjecture 1. The density § = % is the least possible density of a 4-chromo (4.10),

hence satisfying the conditions (4.11) and (4.9).
This is the simplest case (for k = 2 and n = 4) of the Conjecture 1' of (4, p.67].
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Part I1. The Case When k = 3

7. The Polytope $0,.

The present Part II is based on and uses the results of {5). We also abandon the

hypercube (3.1) and consider instead the hypercube
(7.1) Y- {-1 ¢ x, g1, 1=1,2,3,4}
having its side = 2,

The 4-dimensional analogue SO‘ of Kepler's Stella Octangula S0 = 803, was studied
in (S, Part 1V, §9, p. 289). It was found to be a connected 3-dimensional polytope ll‘
having as 3-facets 16 congruent regular tetrahedra and 16 congruent regular truncated

tetrahedra. The shapes of these 3-facets are shown in Fig. 5 of (5, p. 289].

The 16 regular tetrahedra were shown in [5, §5) to be given by the intersections
4
(7.2) Fyle 66,60 = v, 0 { ‘{ €x, =3}, where € =11.
Also that the 16 regular truncated tetrahedra are given by
4
- n - =
(7.3) Pile ,gy0e,6) =¥, O 2: ex =1}, where ¢ =% 1.

The 32 polyhedra (7.2) and (7.3) are all inscribed in \ in the following sense: All of

their 2-facets are on the boundary 31‘ of 1‘, i.e. they are in the eight cubes
x, = 1 (1= 1,...,4),

Let = denote a hyperplane of R‘. The 2-facets of the intersection Ya N % are the
intersections of ¥ with the 3-facets of ! likewise the 1-facets of Y4 N w ax;o the

intersections of ¥ with the 2-facets of 7‘. Let us termine the 1-facets of 1‘ n w,

where v is one of the two hyperplanes




(7.5) LA e x = 1.

For this purpose we gselect the 2-facet of Y 4 given by
(7.6) £ = {x1 =N, % =N, where n =%, n, = £1} .
From (7.4) and (7.6) we find that £ N b is defined (within y‘) by the three equations

X, =n, X, *n and

1 My} 2°
(7.7) e3x3 + €% " 3 - e1n1 - ez“z .

This lcst equation depends on the values of n,,nz, and beconmes

3 it ci"i are of opposite signs

c3x3 + c‘x‘ - 1 if t:,r\1 - ‘2"2 = 1

5 if €N, = czl\zﬂ-i .

However, the first and third equations have evidently no solutions in Yo and we are left
with the equations

Ky = €0 Xp T Gu Ex3 F Exg = 1.
Likewise we find £ N ¥, to be described by X, = Ny X = N, and

e.x, + €.x -1-:11\1-:2112,

373 44
or
, 1 if tj.v\1 are of opposite signs ,
S c3x3 + c‘x‘ =] =1 {f €n, - eznz =1

a- ety
DAY
AP

3 if C1ﬂ1 = 221\2.-1 .

s

F
s
™

Here the laat has no intersection with \A and the final result is as follows:
1-facets of £ Ny o Are given by
(7.8) x1 - n,, X, = !&, c3x3 + t‘x4 = 1
for € - 21, € " 1.
The equations (7.8) are evidently the four sides of the square having as vertices the

successive midpoints of the four sides of the (square) 2-facet (7.6) of Y‘- We reach a

«19=
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similar conclusion if we replace in (7.6) x, and x, by Xy and xj(i < j). We have

proved
Theorem 3. y‘ has 6 x 4 = 24 square 2-facets. In each of these squares we
inscribe the sguare with vertices in successive midpoints of its sides. The sides of these

inscribed squares give 4 x 24 = 96 segments, and these 96 segments are all the 1-facets

of s0,.

8. A Description of Pig. 8.

Like Figures 2 and 4 Fig. 8 shows a parallel projection of 14 on our R3. In view
of our new definition of Yar the lower cube is x,; = =1 and the upper cube in x4 = 1.
No attempt was made to draw all 96 1-facets of S0, of Theorem 3, as this would have
overburdened our Fig. 8, rather we exhibit only four of the 32 3-facets of so‘, which are
connected by three successive reflexions.
We start from the tetrahedron
(8.1) F3(1,1,1,1) = ABCD .
It is in Y@' but its four 2-facets are in four of the 3-facets of 1;: Thus
(8.2) BCD C {x4 =1} ;
indeed, Fig. 8 shows clearly that BCD belongs to the top cube. (8.1) is reflected by each
of the four 3-facets of Y4 which contain its four 2-facets. However, we choose to
reflect (8.1) only in the 3-facet x, = 1. To do this reflexion we rewrite (see {7.2))
Xg + X ¥ X3+ x,=3 as
Xy Xy +oxy 4+ (x4 -1)=2,
and change the sign of the fourth term on the left, obtaining the new equation
Xy + %y + %3 - (x4 = 1) =2
or
Xg ¥ Xy + X = X, = 1
abtaining the new 3-facet
(3.3) Fq(1,1,1,-1) .

From (7.3) we gee that (8.3) {3 in the hyperplane Xy ¥ Xy + Xy = X, ™ 1, and we wish to

-20=
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reflect it in x; = -1. To do this we rewrite it as x, + x5 + x3 = (x4 + 1) = 0, and
change the sign of the 4th term to obtain

Xg + %5 + %3 + (%3 +1) =0,
Or -Xq = X5 = X3 - X4 = 1. Again by (7.3) we see that we have reached the 3-facet
(8.4) Fyl=1,-1,-1,-1) .
Our final reflexion is again in the top cube x4 = 1: We rewrite Xy "Xy < X3 < Xq ™ 1
as =Xy = Xy = X3 = (x4 = 1) = 2 and changing the sign of its 4th term we have
“Xq < Xy < X3 + (x4 = 1) = 2, which is equivalent to =-x, = Xy = %3 + x4 = 3. By (7.2)
this gives our last 3-facet
(8.5) Fa(=1,=1,-1,1) .

By (8.1), (8.3), (8.4), and (8.5) we obtain the string of four 3-facets of 850,:
(8.6) Fa(1,1,1,1) U Fy(1,1,1,=1) U Fy(=1,21,=1,-1) U Fa(-1,=-1,-1,1) ,
which we now attempt to represent in Fig. 8.

The first is given by (8.1). The second, F,{1,1,1,~1) is a truncated tetrahedron
having as top 2-facet the triangle BCD, and as bottom 2-facet the regular hexagon
(8.7) PQRSTU .

Its remaining 2-facets are three triangles and three hexagons, which are affine regular,
and are indicated by "dashed” lines. The third 3-facet, Fy(~1,-1,-1,~-1] has also as
bottom 2-facet the hexagon (8.7), while its top 2-facet is the triangle B'C'D', also
belonging to x4 = 1. Its remaining 2-facets are also three triangles and three hexagons
shown by "dash-dot-dash” lines. The last term of (8.6) is the tetrahedron

(8.8) Fy(=1,-1,-1,1) = A'B'C'D' .

Let me say that the 3-dimensional model of Fig. 8 shows much more clearly the two
truncated tetrahedra (8.3) and (8.4), also because their edges are pointed in different
colors.

The following "optical®™ remark might help to illuminate the situation: If we place a
light=bulb in the interior of ABCD so that its rays spread within the 3-flat determined
ABCD, then its rays strike X, = 1 in the triangle BCD, get reflected by x, = 1 into

(8.3), £illing it and striking x4 = =1 in the hexagon (8.7). These rays are reflected
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by x4 = -t into (8.4). Finally, these rays again strike x; = 1 in B'C'D', and are
reflected into the tetrahedron (8.8). Notice that the extreme points A and A’ are
symmetric in the center c¢ of 74.

Our final remark is that the 32 3-facets of S0, fall apart into 8 strings of
polyhedra, like the union (8.6), as follows. For ei = $1 we assume that
(8.9) € €, €€, = 1.
In place of (8.1) we now start with the tetrahedron
(8.10) ra(e1,c2,c3,e4)
and perform the reflexions in Xy = €4 x, = -c4, and finally in g = €4 These
operations, as described before, lead to the union
(8.11)  Fy(€,,€,,€3,€) U P (€,,€),€5,7€) U F(=€),7€),=€y=€) U Fy(=€1,=6) im0 €) -
Varying the 'c‘ subject to (8.9) gives eight unions like (8.11), and together they contain

all distinct 32 3-facets fo 504. If we disregard the restriction (8.9), we would obtain

each 3-facet twice.

Bollelaan 10

Naarden, North Holland
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ABSTRACT (cont.)

or infinite polytope H:. Here we assume that
1<kn~-1.
The present paper deals with the case when n = 4, and when

(1) : k=1, k=2, and k =3 .

The main problem is to determine nﬁ to stay away as much as possible from
the center c¢ of Yn' the main emphasis being the graphic representation of
the extremum H:. This is done for the three cases (1) in Figures 2, 4, and
8. These figures are parallel projections of Y4 onto our space R, The
author also made for each of these figures 3-dimensional models made of thin
wooden sticks, and my colleagues, in the Fine Arts Department of UW, say that
these models qualify as examples of Constructive Art. All of these polygons

and polytopes are self-reflecting, meaning thereby that we obtain the entire

object by starting from one of its k-facets, and reflecting it successively in

the facets of 74.
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